We can estimate the difference in means for each stratum: \[ \hat{\tau}_{fsg} \equiv \overline{Y}_{tg}^{obs} - \overline{Y}_{cg}^{obs} \equiv \frac{1}{N_{tg}} \sum_{i: G_{ig} = 1} Z_i \cdot Y_i^{obs} - \frac{1}{N_{cg}} \sum_{i: G_{ig} = 0} (1 - Z_i) \cdot Y_i^{obs}. \]
Then, we can take the weighted average: \[ \hat{\tau}_{fs} \equiv \sum_{g = 1}^G q_g \hat{\tau}_{fsg}. \]
With the fixed stratum size, the unbiasedness of each within-stratum estimator implies unbiasedness of \(\hat{\tau}_{fs}\) to \(\tau_{fs}\).